موقع عيون البصائر التعليمى

ثانوية يوسف بولخروف ـ الشفة الموسم الدراسي: 2022 / 2023

المستوى: 3 ع ت

امتحان الفصل الأول في مادة العلوم الفيزيائية

التمرين الأول: (12 نقطة)

الشركة الخاصة (Space X) تعمل في تصنيع الطيران و النقل الفضائي ،اطلقت العديد من الاقمار الاصطناعية (Star Link) لخدمة الأنترنت. تدور هذه الاقمار الاصطناعية في مدارات اهليليجية و ذلك خلال مرحلة تجريبية

لمدة زمنية معينة ، ثم تدخل هذه الأقمار في مدارات دائرية حول مركز الارض بسرعة ثابتة يهدف هذا التمرين لدراسة القمر الاصطناعي (Star Link4) و تحديد بعض المقادير الفيزيائية المميزة له.

المعطيات:

 $R_T=6400~Km$: نصف قطر الأرض

 $G imes M_T = 4 imes 10^{14} N.\, m^2/Kg$: الجداء

T=24h: تنجز الأرض دورة كاملة حول محورها خلال مدة زمنية

I. دراسة حركة القمر الاصطناعي (Star Link4) في مداره الاهليليجي:

أحد هذه الأقمار الاصطناعية $Star\ Link4$) كتلته $m_S=10^3 Kg$ يدور في مدار إهليليجي حول الأرض ، يبلغ أبعد نقطة A عن A عندما يكون على بعد الأرض عندما يكون على بعد A عن سطحها ، و يمر من أقرب نقطة للأرض A عندما يكون على بعد A عن سطحها .

- 1 ارسم شكلا تخطيطيا للمدار الاهليليجي الذي اتخذه القمر الاصطناعي خلال المرحلة التجريبية موضحا عليه: موقع الأرض و النقطتين A و P .
 - 2 ذكر بنص القانون الثاني لكيبلر ، ثم بين أن سرعة القمر ليست ثابتة في مداره .
 - . P الني يستغرقه القمر ليمر من A إلى A
- A احسب شدة القوة التي تطبقها الأرض على هذا القمر الاصطناعي عند النقطتين A و P ، ثم مثل شعاع هذه القوة في النقطة A باستعمال سلم الرسم التالي: 100N o 100N.
 - II. دراسة حركة القمر الاصطناعي (Star Link4) في مداره الدائري:

نعتبر القمر الاصطناعي ($Star\ Link4$) نقطة مادية كتلتها m_S يدور حول الأرض في مسار دانري نصف قطره r على ارتفاع h عن سطح الأرض يخضع هذا القمر لقوة جذب الأرض فقط ، يدور في نفس جهة دوران الأرض حول نفسها و في مستوي خط الاستواء .

ندرس حركة هذا القمر في المعلم $(oldsymbol{o}; \overrightarrow{oldsymbol{u}})$ المرتبط بالمرجع الجيومركزي

- 1 ما هو الشرط حتى يكون هذا المرجع غاليليا (عطاليا) بما فيه الكفاية ؟
- $\overrightarrow{F_{T/\varsigma}}$ على القمر موضحا معلم الدراسة $(o; \overrightarrow{u})$ ، ثم مثل شعاع القوة التي تؤثر بها الأرض على القمر $F_{T/\varsigma}$.

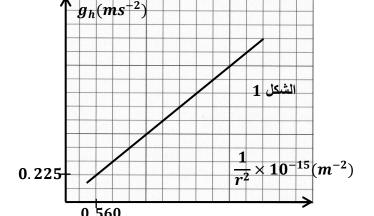
elbassair.net

3 - بتطبيق القانون الثاني لنيوتن في مرجع الدراسة وضح أن حركة القمر دائرية منتظمة .

 \overrightarrow{u} عاع الوحدة \overrightarrow{m}_S و شعاع الوحدة $\overrightarrow{F}_{T/S}$ بدلالة : كتلته $\overrightarrow{F}_{T/S}$ بدلالة : كتلته $\overrightarrow{F}_{T/S}$ بدلالة ثابت الجذب العام $\overrightarrow{T}_{T/S}$ ، كتلة الارض $\overrightarrow{T}_{T/S}$ نصف قطر المسار الدائري ، و شعاع $\overrightarrow{T}_{T/S}$ بدلالة ثابت الجذب العام $\overrightarrow{T}_{T/S}$ ، كتلة الارض $\overrightarrow{T}_{T/S}$ نصف قطر المسار الدائري ، و شعاع الوحدة $\overrightarrow{T}_{T/S}$.

$$\cdot g_h = rac{GM_T}{r^2}$$
 : اعتمادا على السؤالين - أ - و - ب - اثبت أن عبارة ا

III. تحديد بعض المقادير المميزة للقمر (Star Link4)


لغرض تحديد مميزات القمر الاصطناعي

(Star Link4) نسجل خصائص مدارية لعدة أقمار

اصطناعية ، نمثل تغيرات الجاذبية g_h و قيمة الجاذبية

على ارتفاع h عن سطح الأرض) بدلالة مقلوب مربع

: - 1 في الشكل يا :
$$g=f(rac{1}{r^2}):rac{1}{2}$$

 M_T باستغلال البيان اوجد قيمة كتلة الأرض M_T

(
$$extbf{G} = 6.67 imes 10^{-11} \, ext{SI}$$
 : يعطى

2 - إذا علمت أن قيمة الجاذبية الأرضية على مدار القمر (Star Link4) هي $g=0.225m/s^2$ حدد ما يلي :

أ / الارتفاع h لهذا القمر عن سطح الأرض .

T السرعة المدارية و الدور

ج/ ما اسم هذا النوع من الأقمار الاصطناعية ؟ اذكر أهميتها.

التمرين التجريبي: (8 نقاط)

الماء الأكسجيني H_2O_2 يتوفر على شكل سائل بلون أزرق شاحب و هو قليلا أكثر لزوجة من الماء ، هو حمض ضعيف و نظرا لطبيعته المؤكسدة يستخدم كعامل تبييض .

. I^- يهدف هذا التمرين إلى دراسة حركية التفاعل بين الماء الاكسجيني H_2O_2 و شوارد اليود

لدينا محلول مائي S_0 للماء الاكسجيني تركيزه المولي $C_0=0.2mol\ /L$ ، نحضر محلولا مائيا S_0 انطلاقا من المحلول S_0 تركيزه الدينا محلول مائي V'=5ml المخفر S_0 عن طريق التخفيف . ناخذ في بيشر حجما V'=5ml من المحلول المحضر S_0 و نضيف له حجما S_0 من المحلول المحضر S_0 عن طريق التخفيف . ناخذ في بيشر حجما S_0 من المحلول المحضر S_0 عن المحلول . S_0 عن المحلول . ثم عند اللحظة S_0 نضيف حجما S_0 من محلول يود البوتاسيوم تركيزه المولي . حمض الكبريت المركز ، ثم عند اللحظة S_0 نضيف حجما S_0 من محلول يود البوتاسيوم تركيزه المولي .

: ينمذج التحول الكيمياني الحادث بمعادلة التفاعل التالية . $C_2=0.\,1mol/L$

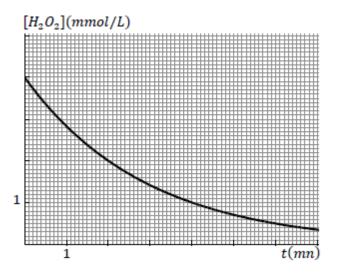
$$2I_{(aq)}^{-} + H_2O_{2(aq)} + 2H_3O_{(aq)}^{+} = I_{2(aq)} + 4H_2O_{(l)}$$

elbassair.net

المتابعة الزمنية لهذا التحول مكنتنا من تمثيل تغيرات التركيز المولى للماء الأكسجيني بدلالة الزمن في الشكل -2-:

1 ـ حدد كلا من المؤكسد و المرجع مع التعليل.

2- ماذا نقصد بعملية التخفيف ؟


C=0.02mol/L: هو S اعتمادا على البيان بين أن التركيز المولي للمحلول S

4 - من بين الزجاجيات التالية ماهي التي نستعملها لتحضير المحلول 5 ؟ مع التعليل .

ماصات عيارية: 10ml ، 20ml ، 5 ml

حوجلات عيارية : 100 ml ، 250ml ، 500ml

5- مثل برسم تخطيطي البروتوكول التجريبي لعملية التخفيف.

- x_{max} انشئ جدول تقدم التفاعل و احسب التقدم الاعظمي 6
- $[I_2]=3mmol/L$ عند اي لحظة زمنية t يكون التركيز المولى لثنائي اليود المتشكل t
 - 8 عرف زمن نصف التفاعل محددا أهميته ، ثم جد قيمته بيانيا .
- $t_1=3min$ ، ثم عند اللحظة $t_1=0min$ ، ثم عند اللحظة $t_1=0min$ ، ثم عند اللحظة $t_1=0min$. ب / كيف تتطور السرعة الحجمية للتفاعل ، فسر ذلك مجهريا .

بالتوفيــــق للجميــــع

elbassair.net